
Mathematics for Life Sciences 

An Overview 

Sometimes in the quick pace of a math class it is easy to lose track of why we are learning the materials. I hope 

the following will illustrate some of the reasons why math 151-152 was created for life science students. I also 

want to not only provide some insight into what we will learn this semester in math 152, but why we are 

learning it. 

Life sciences students and/or health professionals concern themselves with the study of a (or various) 

Biological Process(es) 

Some Examples: 

 

 

 

 

 

 

 

There are two ways to study any given biological process 

a. Qualitatively-  Making observations/descriptions using words 

b. Quantitatively- Making observations using numbers. Collecting data  

 

We are approaching life sciences from the quantitative point of view and therefore we have to consider data.  

Making sense of data is where statistics and probability comes in 

 Analyzing data (mean, mode, median, distribution etc..) 

 Fitting data (least squares etc..) 

 What are the chances an event will  occur? 

o Does history matter? 

 Genetics- what traits will offspring have? 

 Population dynamics 

o Birth/death rate 

o Disease spread  



Once we have an idea of how a biological process works we can use mathematics to model it. 

Mathematical model: A description of a system using mathematical concepts and language. We will focus on 

mathematical models that are functions. 

Function: A rule that assigns to each element   in one set (known as the Domain) exactly one element,     , 

in another set (known at the Range) 

Domain can be thought of as a set of input values where the range is the set of possible output values 

 

       

The graph of a function is the set of all ordered pairs          where   is in the domain. 

Main different between functions in 151 compared to those in 152: 

 

 

 

Consider the following hypothetical continuous mathematical models: 

1) Let      represent the quantity of a drug in the blood stream   minutes after ingesting it 

2) Let      represent the amount of algae in a pond given sunlight level   

3) Let      represent the number of Wolves in the forest as a function of the number of rabbits,  . 

Possible topics of interest for above models: 

 Knowing what happens at a point of interest 

 

 What happens in the long run? 

 

 Both previous examples can be posed as a rate of change question 

 

 Knowing total amounts 

http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Mathematics


Chapter 15- Limits 

 reads: the limit of      as   approaches   is   

  exists if      gets arbitrarily close to   as   gets arbitrarily close to   

 

Theorem:                          if and only if                                     and                               

 

3 Ways to Evaluate a Limit:   

 

1)                                                      2)                                                                                                      3) 

 

 
 

 

Sometimes you can just plug     into       

However, not always: 

 

EX: Let     
√      

  
 .      Consider            

√      

  
 

 

 

1)                                                      2)                                                                                                      3) 

 

 
 

   
   

         



Some limits do not exist: 

 

EX:              
| |

 
 

 

 
 

Evaluating Limits Algebraically 

 

Key Properties of Limits: 

 

Let               be real numbers 

Let              and let              
 

1)            

2)                                            

3)                      

4)                      

5)        
    

     
 

 

 
           provided     

6)           
           

 

               for     

7)           
           

 

            for     

Use the above properties whenever possible to evaluate limits of sums, differences, products and 
quotients. 

However, they don’t always work right away 

EX:               
√      

  
 



 

Indeterminate Forms 

 

 
                  

 

 
                                                                                                 

If you using one of the key properties on the previous page results in an indeterminate form you need to 
rethink your approach. 

 

Tools for dealing with indeterminate forms: 

a) Multiply by an appropriate form of 1 

a. Usually either  
         

         
  or    

 

  
 

  

  for an appropriate value of    

 
b) Factor and cancel common terms 

 
c) Combine terms 

 

 

 

EX:  Lets revisit              
√      

  
  

 

 

 

 

 

 

EX:                
 

   
 

 

    
 

 

 

 



Limits at Infinity 

 All key limit properties still apply 

 Fact:  If                                                 then we say that      has 

a horizontal asymptote at     

 

EX: From “key properties of limits”,             
 

 
   

 

 

 

EX:  

From chapter 5, the photosynthetic rate for the lower leaves on a soybean plant is a function of the light    
level:  

     
     

           
      

Where   is the photosynthetic rate and    is the light level measured in             . 

Estimate the maximum photosynthetic rate for lower leaves on a soybean plant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Ex:            
  

√    
 

 

 

 

 

 

 

 

Ex:            
    

   
 

 

 

 

 

 

Ex:              
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Chapter 16- Continuity 

 Let      be a function, let      and     be real numbers. 

In chapter 15 we saw the idea of left and right side limits,  ie,                 and             . 

 

Theorem 

                   if and only if                                     and                               

 

 
 

 

 

 

Continuity 

Let      be a function with     in its domain. 

We say      is continuous at    if                    

 

This implies:   1)  

2)   
 

3)   

4)   
 

 If a function is continuous at every point in its domain, then entire function is said to be continuous 
 

 If the function is not continuous at a point “  , we call it discontinuous at     

SOME EXAMPLES: 

Continuous functions 

 

  

 

 

 



Discontinuous Functions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An Infinite Discontinuity occurs when                 

 

EX:         and  
 

 
  at      

 

A Jump Discontinuity occurs when                                  both exist but are not equal 

 

EX:  
| |

 
 

 

A Removable Discontinuity occurs at a point in the graph where a hole exists 

 

 EX:   
    

   
 



Two types of functions we will encounter in math 152 may not be continuous: 

a) Rational functions 
 

b) Piecewise functions 
 

 

Rational Functions with Discontinuities: 

EX:                    
 

   
 

 

 

 

 

 

 

 

EX:             
    

   
 

 

 

 

 

 

Piecewise Function with a Discontinuity: 

EX:            {
                    
                    

 

 

 

 

 

 

 

Note: Not all functions of these forms have obvious discontinuities   see next page 

 

 

 



Rational functions always have discontinuities at the values that make their denominator equal zero. 
However, the specific type of discontinuity is not always obvious: 

EX:              
      

 
 

 

 

 

 

 

EX of a continuous piecewise function:     

     {
                       
                   

 

 

 

 

 

 

 

 

 

 

 

EX 

 

 

 

 

 

 

 

 

 

 



Intermediate Value Theorem     

Often times we are interested if a function achieves a certain value.  

For example, suppose a population of insects can be modeled by  

     
  

 
 

  

    
   

Where   is measured in days and   has units number of individuals. 

 

A valid and meaningful question would be whether or not the population achieves a certain value.          
For example, we might be interested if there is ever a time that the population ever reaches      individuals.   
That is, does there exist a    such that           ?  

Option #1: Solve 
  

 
 

  

    
        for   

 

Option #2: Graph           

 

Option #3: If we don’t care about the exact value of    that yields            but instead just want to know 
if the population ever reaches      then we can use the intermediate value theorem: 

The Intermediate Value Theorem 

If      is a function that is continuous on a closed interval       and   is some value between      and     , 
then there exists and value   such that       and        

 

 

 

 

 

 

 

 

 

 

 

 



EX:  Let      
  

 
 

  

    
   model a population of insects as described on the previous page. Use the 

Intermediate Value Theorem to prove that the population achieves a size of     .  

 

 

 

 

 

 

 

 

 

 

 

EX: The photosynthetic rate of a 215 day old soybean plant can be modelled by 

                         

Where   is the photosynthetic rate measured in               and   is measured in hours.   

Use the Intermediate Value Theorem to prove that there exists a time of day such that a 215 day old soybean 
plant has a photosynthetic rate of 10. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 17- Rates of Change 

When considering a biological system, a researcher often wants to know where the system will be rather than 

where it currently is. Thus, to understand a biological situation, it is often important to understand how the 

given system is changing rather than trying to consider its current state.  

Some examples: 

 How does the weight of a moose change…  

a) Over the first 10 years of its life 

b) When the moose is 200 hours old 

 

 How is the concentration of a drug in a person’s blood stream changing… 

a) Over the course of the first several hours after ingesting it 

b) 25 minutes after ingesting the drug. 

 

 What is the rate of change of federal spending on stem cell research… 

a) Over the past 10 years 

b) In 2007 

 

Different Types of Rates of Changes 

Type a) above are all                                                                                   . These types of rates describe how 

something has changed over a period rather than at a specific value. This type of rate of change gives more 

general information about the system in question. 

Ex: 

 

 

 

Type b) above are all                                                                                        , because they describe what is 

happening at a specific point (or instance). This type gives specific information at a point rather than general 

information over a period. The instantaneous rate of change of a function      at a point     is called the 

derivative of      at a, denoted      . 

Ex: 

 

 

 



A) Average Rate of Change- Tells us general information about how something has changed over a period 
 
The average rate of change of quantity      over the interval         is given by the following: 

              

                   
    

     

  
   

           

     
 

 

EX: The weight of a female Moose at time   is determined by                       , where   is 

weight (in kg) and   is time (years). What is the average rate of change of the weight of a female Moose from 
age           ? 

 

 

 

Average velocity is a common application of average rate of change 

Using the above definition of average rate of change, Average velocity  
                   

              
 

EX: Suppose we drove to Nashville (~180 miles) in 3 hours. Find the average velocity of the trip. 

 

 

 

EX: A King Fisher’s height   (in feet) from the water at time   (in seconds) is modelled by: 

                

Find the bird’s average velocity over the first 2 seconds. 

 



B) Instantaneous Rate of Change- tells us the rate of change at a specific point. If we are given a function this 
can be thought of as the slope (or steepness) of the function at a specific point. 

There are 2 methods for finding instantaneous rate of change. One is an estimate, one is exact. 

In all of the following, assume that       

Method 1 (an estimate):  

 

                  

         
   

 
         

   
 

       
 

 
(
         

   
 

         

   
)    

 

 

Method 2 (the exact value):  

 

             
   

  
         

   
 

 



EX: Suppose      models the concentration of a drug in the blood stream (in        minutes after injection. 
The following table gives values of   at various times  : 

  0 0.1 0.2 0.3 … 
     0.84 0.89 0.94 0.98 … 

 

Estimate the instantaneous rate of change of the drug at       minutes. 

 

 

 

 

EX: A King Fisher’s height   (in feet) from the water at time   (in seconds) is modelled by: 

                

a) Estimate the velocity at     
b) Exactly calculate the velocity at     

Hint/reminder: velocity is a rate of change 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Visualizing Rate of Change 

 

Since rates of change tell us how a function is changing… 

 A positive rate of change at       means the graph is increasing at that point 

 A negative rate of change at      means the graph is decreasing at that point 

 Zero rate of change occurs where the graph is “flat” 

 

EX: Suppose we drive from Knoxville to Nashville and that the following graph depicts the cars distance from    

Knoxville during our trip. 

 

o Where is the rate of change the largest? 

o Where is there zero rate of change? 

o What is happening at 3? 

o Draw a line whose slope is the average rate of change from 4 to 2 

o Where in the graph is the car slowing down? 

o Where in the graph is the car speeding up? 



Chapter 18- Derivatives of Functions 
 

In the previous chapter we saw the idea of rates of change… 

 Over a period: Average rate of change 
 At a specific point: Instantaneous rate of change 

 

       is known as the derivative of      at the point    .  

      is a numerical value that denotes the instantaneous  rate of change of the function      at the point 
   .   

With the above in mind,       tells us how the graph of the function is changing at the point    .         
That is,       tells us the slope of the line that is tangent to the point      

 

 

      

 

 

 

 

We learned in chapter 17 that                        
         

   
 

Similar to        is the function        that would let us know the instantaneous rate of change of      at any 
point by simply plugging in the value into the function. 

In chapter 18 we discover that                     
           

 
 

 

If we let       in it        yields   

 



Notation: The derivative of        is denoted by any of the following: 

 

  
                                   

 

  
                                  

  

  
                                                                

 

When computing                   
           

 
 we need to know how to plug in                and  . 

     is simply the function itself and   is a new variable.  

However, people often times get confused what to put in for        so what follow is an explanation of that 
term: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



We now know that                    
         

   
   

We learned previously that in for any limit to exist we need the right hand limit to equal the left hand limit. 

Thus, in this case, in order for       to differentiable at the point     we need 

     
    

  
         

   
        

    
  
         

   
 

 

This limit does not always exist as illustrated by the following examples: 

1) Both limits exist but are not equal 

 
 

             
 
 
 
 

2) The value      does not exist 

 

3)                 

 

 



Chapter 19- Computing Derivatives 

Throughout chapters 17 & 18 we learned about derivatives (rates of change) and how to calculate the 

derivative of      using the limit definition 

         
   

           

 
 

We can use the above definition to derive the following derivative rules: 

Let               be constant real numbers 

# Name of Rule Form of Function Derivative 

 
1 

 
Power Rule 

 
        

 

 
            

 
2 

 
Sum Rule 

 
               
 

 

                  

 
3 

 
Constant Function 

 
       

 

 

        

 
4 

 
Constant Multiple 

 
            

 

 

              

 
5 

 
Linear Function (a 

combination of 1,2,3 & 4) 
 

 
          

 

 

        

 
6 

 
Product Rule 

 
               

 

 
                  

           

 
7 

 
 

Quotient Rule 
 
 
 

 

     
    

    
 

 

 

       
 

                   

       
 

 
8 

 
Chain Rule 

 
             

 

 

                     

 
 

9 

 
 

Exponential Function 
 

 

           
 

        

 

                  
 

                



   

 
 

10 
 

 
 

Sine Function 
 

 
 
                

 

 
                       

 
 
 

 
 

11 
 

 
 

Cosine Function 
 

 
 
                

 

 

 
                        

 
 

12 
 
 

 
 

Logarithmic Function 

 
 

               

 
 

            
 

    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Examples: 
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Chain Rule Examples 
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Higher Order Derivatives 

 

Thus far given the function      we have discussed finding the first derivative,      . 

We now turn to taking multiple derivatives of the same function and discuss why we might do so. 

 

Let      be a function with first derivative       

Then           
 

  
                

And  
 

  
               

Note that all the derivative rules we previously discussed still apply to higher order derivatives. 

 

Meaning of Higher Order Derivatives 

Let      be a function 

 

 

 

Ex: 

 

 

 

 

 

 

 



A line that is tangent to a curve is one that touches a single point without crossing through the shape.         
With this in mind a line tangent to a function represents the steepness of the function at that point. 

Finding the Equation of a Tangent Line to      at the point      

 

 

 

Procedure: 

1) Find       

2) Calculate        

3) Use point (      ) to write the equation of the tangent line at      

 

Ex:           
.  Find the equation of the tangent line to      

 

 

 

 

 

 

 

 



Chapter 20- Finding and Classifying Critical Points 

When considering the model of a biological process some of the more important values are the extreme 
points and discontinuities. Extreme points are where the process takes on maximum/minimum values while 
discontinuities are where the process does not exists mathematically. We call these critical points. Such points 
are important because extreme points could represent the highest/lowest value of a population in the wild, or 
the concentration of a drug in the blood steam or perhaps the minimum density of a disease traveling through 
a population. A discontinuity could exist at a point where the model does not make sense to exist. For 
example, rational models (fractional functions) usually have a value that makes the denominator equal zero at 
a point the model cannot take on. 

 

 

Consider the above curve of some continuous function      

We say that      has a Local Maximum/Minimum at     if      is less than/greater than      at points 
surrounding      

We say that      has a Global Maximum/Minimum if      attains its largest/smallest value at     . 

 In order for a point     t to be a maximum, the graph needs to be increasing before     and 
decreasing after     
 

 In order for a point     t to be a minimum, the graph needs to be decreasing before     and 
increasing after     

o In either case above, the sign of the derivative switches at     

o This implies that the function has no change at     
 

 A point     is a point of discontinuity if      does not exist (DNE). (Often       DNE either). 

 Sometimes         but the point is not a max nor a min.  

o We call these points of inflection (see graph above) 

o This is where a curve changes concavity (defined later) 



Considering the information on the previous page, we find critical points by:  

A)  

 

B)   

 

It is clear that a point that results from method B) is a discontinuity. However, once we find critical points from 
method A) we need a way to determine whether they are maximums,  minimums or points of inflection. 

 

The First Derivative Test 

Let      be a continuous function,          and suppose that        .               
Since        , there must be a critical point at     . To classify it we can use a sign chart and the first 
derivative      . 

X value       

          

          

          

        

X value       

          

          

          

  

 

 

 

 

 

X value       

                

          

               

 

 

  



Examples:  

Let         .  Find all critical point(s) and classify them using the first derivative test. 

 

 

 

 

 

 

 

Let           .  Find all critical point(s) and classify them using the first derivative test. 

 

 

 

 

 

 

 

Let               .  Find all critical point(s) and classify them using the first derivative test. 

 

 

 

 

 

 

 

 

 

 

 



Concavity 

The concept of concavity of a function is best grasped using pictures: 

Concave Up  Concave Down 

 

 

 

 

 

 

Another approach… 

We know that                                                   

Then (     )
 
                                                .  That is,        tell us how the rate of 

change is changing. 

So if          this implies that       is decreasing at       which means that the graph is flattening out: 

 

 

 

Similarly, if          then the graph is becoming more steep at     : 

 

 

 

Based on the above we state the following facts: 

 If            then       is concave down at     

 If            then       is concave up at     

 If            then       is neither concave down nor up at     

o Instead this is almost always a point of inflection (there are a few special cases where this is not 
true) 

o A Point of Inflection is a place where the graph switches concavity 
o If          in any function we will encounter, it will be a point of inflection 

 

Ex:             



Ex:     Let                .                 
Determine the concavity of      at      and at    . Where does      change concavity? 

 

 

Recall that since max/mins are “flat” points on a graph, we solve         in order to find them.                     
So far we used       to help classify critical points. We can also use        to determine concavity at these 
values in order to classify them. 

 

The Second Derivative Test 

 

Suppose         

 If            then      is a min 

 If            then      is a max 

 If            then      is a point of inflection 

Examples 

 

Let               .  Find all critical point(s) and classify them using the second derivative test.          
We have seen this problem previously so I won’t spend time finding the critical points. 

 

 

 

 

 

 

 

 



Let        
 

 
.  Find all critical point(s) and classify them using the second derivative test.    

 

 

 

 

 

 

 

 

Let           
  

 
.  Find all critical point(s) and classify them using the second derivative test. 

Also, determine all values where      is concave up and concave down. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Finding the max/mins of a function on a closed interval 

More often than not, Biological models have restricted domains and/or ranges. 

For example:   

o      which tells us the milligrams of medicine a person who weighs weight   requires 
 
 
 

o Any time based model (ie,      where   is time) 
 

 

 

o Probability function       (from 151) 

 

 

Procedure for finding the max/mins of function      on a closed interval      : 

1) Find all critical points of      as discussed previously  
 

2) Eliminate any that are not found in the interval       
 

3) Plug all critical points and end points of the interval in the function to see which is the largest/smallest 

Ex: Let            . Find the maximum and minimum of      on the interval       . 

 

 

    

 

 

 

 

 

 

 



Lets practice analyzing a bit more complicated function.                 

Let      
       

   
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Sketching      given information about       

Since       tells us where      is increasing/decreasing and where the maximums/minimums are, we can use 
this information to sketch the general shape of     .  

 

Ex: Suppose we used the 1st derivative test and obtained the following sign chart: 

 

 

 

 

 

 

 

Ex 

 

 

 

 

 

 

 

 

Ex (assume the discontinuities are infinite discontinuities) 

 

 

 

 

 

 

 



Exponential Models 

An exponential model is a model containing the term     where   is a constant and   is a variable. 

 

1) If       2) If     
 

                

 

We can use exponential models to describe situations where there is either growth (                              
or decay (   ) in unlimited environments. 

A Simple Example: 

 

Suppose      tells us the population of a type of animal at time  . If a population lives in an area that 
contains unlimited resources then the population will grow uncontrollably. 

 

More specifically, the growth of the population would be proportional to the number of individuals 
present.  

That is,                

where                      at time    and                                  . 

 

This differential equation can be solved using methods found in chapters 26-28 to obtain the following 
solution: 

            

where                              and                                  . 

  

If       then the population is growing 

If      then the population is declining 



Optimization Problems 

Getting the most out of a situation is something everyone strives for. This is especially the case when 
considering complex systems that contain objectives and constraints whose relationship with each other 
have unclear tradeoffs and implications. Such systems arise in countless applications in sciences, business 
and everyday life. 

 What levels of light and/or nutrients yield the best crops? 

 What is the best way to get our product to the distributors? 

 Given a limited quantity of supplies, how can we make the most effective or most cost efficient or 

largest product? 

 What dosage/frequency of a drug will effectively fight the disease without hurting the patient or 

resulting in the patient becoming broke?  

 What is the least amount of effort I can put into math 152 while still getting the grade I want? 

 How can we employ our resources to limit the population of an invasive pest while efficiently 

managing our funds? 

Since a major application of calculus is finding the maximums/minimums of functions, it provides us a tool 
in which to answer some of these types of questions so that we can achieve the optimal result.  

 

All optimization problems are different (which is fun and exciting!)   

               
What follows are general guidelines to solving optimization problems: 

1) Define the key variables in the problem 
o There can be many variables in real world applications 
o We will generally only see 2 in each problem 

 
2) Draw a picture relating the variables (if applicable) 

 
3) Derive the objective function      

o This is the function that we are trying to maximize/minimize 
o This function should be written in terms of the variables found in 1) 

 
4) Determine if there exist any constraints on the variables 

 
5) Write      in terms of only 1 variable 

o Usually requires solving for one variable and substituting it into the other  
 

6) Use calculus to find the max/min of      
 

7) Make sure your answer is reasonable 
o Help catch mistakes and/or make improvements 



Optimization Examples: 

Suppose the function      
 

    
  models the yield   of a crop given the nitrogen level  . 

What Nitrogen level yields the most crops? 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suppose      tells use the concentration of a drug in the blood stream   hours after injecting it as given by 

     
  

     
 

What is the highest concentration the drug will achieve in the blood steam? 

 

 

 

 

 

 

 

 

 

 



More Optimization 

A farmer has a grazing area and has 3000 feet of fencing to make a rectangular pen. The grazing area is next to 
a river so the farmer only needs to construct 3 walls. What height and width of the pen would maximize the 
area of the pen? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



More Optimization 

Find two nonnegative numbers whose sum is 9 and that maximizes the product of one with the square the 
other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



More Optimization 

The average individual daily milk consumption for Charolais, Angus and Hereford calves is approximated by 
the function  

                                                 

Where      is the milk consumption (in kg) and   is the age of the calf (in weeks).                        
Find the age of a calf at which maximum daily consumption occurs.       
How much milk is consumed on this day?                  
Do you expect this value to be exactly the same for all calves? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 21- Estimating the Area Under a Curve 

Key Question: How can we get some sort of cumulative/total type number from a function? 

For Example,  Suppose      gives the number of births taking place in a town   minutes after the year 2000 

and we want to know the total number of births  from x   to    . 

The answer to this is the number of births at each instance added up over the entire time period. In other 

words, the exact answer would be area between the curve of      and the x-axis. 

 

 

 

 

 

Key Idea: One way to estimate this answer would be to find out how many births are taking place between 

small intervals, assume the same number of births took place between and then adding up each number of 

births times how long went by. This can be viewed as taking an average rate of change at various times and 

summing them. 

How can we can do this:  

1) Break up the length of time into   equal sized pieces 

                  
   

 
 

 

2) Let                                  

 

3) Add up each function value at each    and multiply it by the change in time,   . Note that you need to 

either overestimate your answer or underestimate your answer which leads to two different 

approximations: 

 

 

 

 

 

 

 

 

                         ∑      
     
           or          ∑      

   
       



Example: Let          . Estimate the area under the curve from     to     

using both an upper and lower sum. Break the interval up into 10 pieces, that is, let 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 22- Antiderivatives and The Fundamental Theorem of Calculus 

The area located between a function and the x-axis between two points provides us with the total output 

given by the function between those points. In chapter 21 we saw the idea of how to approximate this area 

using rectangles. 

From Ch 21: 

 

   

 

 

Integral of a Function 

                               
                              

 ∫    

 

 

      
   

∑        

 

   

 

 

 

 

Here (Ch 22): 

 

 

      

 



Antiderivatives 

The antiderivative of      is a function      such that            

 

Ex:  Suppose        .  What is       

 

 

 

 

 

 

 

 

 

Family of Antiderivatives 

 

Notation:     ∫                  

 

 

 

 

Ex:   Let             .  Find the antiderivative of     . 

 

 

 

 

 

 

 



Examples: 

∫        

 

 

 

 

∫    √  
 

  
    

 

 

 

 

 

 

 

 

 

∫            

 

 

 

 

∫      

 

 

 



From last class, the antiderivative of      is a function      such that           . Now that we know 

how to find an antiderivative we can discuss… 

 

The Fundamental Theorem of Calculus 

 If      is continuous on the interval      , then the function      ∫     
 

 
    is 

continuous on      , is differentiable on       and           . 
 

 Furthermore, the area between                                 

 

∫     
 

 
               where      is the antiderivative of     . 

 

Notation:          |

 

 

              

 

 

Question: What about the “  ” ? 

 

 

 

 

 

Area above the x-axis is positive area. For example consider  ∫     

 
   . 

 

 

 

 

 

 



Area below the x-axis is negative area. For example, consider  ∫      
 

 
   . 

 

 

 

 

 

 

If a graph has area both above and below the x-axis then the integral sums the total of each 
piece and gets a cumulative result as illustrated in the following two examples: 

 

Ex:    ∫        
  

 
    

 

 

 

 

 

 

Ex:    ∫     

  
    

 

 

 

 

 

 

 



We have introduced two different types of integrals and it needs to be clear the differences 
between the two: 

1)  Indefinite Integrals 

∫               

 

 

2) Definite Integrals 

∫     

 

 

              

 

 

 

For Indefinite Integrals, how do we find the “  ”? 

 

    

 

Ex: Suppose              represents the instantaneous rate of change of a population at 
time  . Suppose we know there were     individuals to start (ie, at     .                             
Find the exact equation for     . 

 

 

 

 



Averages 

We denote the average value of      between     and     by    ̅̅ ̅ where 

   ̅̅ ̅  
                                     

                    
   

∫     
 

 
   

   
  

 

   
  ∫     

 

 

    

 

Ex: Let              be the population of ants on The Hill at UT   years after this moment. 
Determine the average population size over the next two years. 

 

 

 

 

 

 

Ex: Suppose                          tells us the force   (in Newtons) exerted by a 
tendon as it is stretched   millimeters. Determine the average force exerted between 2mm 
and 11mm. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 23- Methods of Integration 

In chapter 22 we first learned how to find the antiderivative of a function, known as an indefinite 
integral:  ∫                 . 

We then saw how to use the antiderivative to evaluate the area under a curve. This is known as a 

definite integral:     ∫     
 

 
             . 

For more complicated functions, the antiderivative does not fit into one of our previously discussed 

forms.  

To handle these antiderivatives we have:      

     

 

 

The Substitution Method 

Recall the Chain Rule:            
 

  
  (    )                 

Let      be a function that appears to be the result of a chain rule:           (    )         . 

Here we want to find the antiderivative of     :   ∫        ∫                 . 

We can use the substitution method to find the antiderivative of      using the following steps: 

1) Let         where      is usually a function that is plugged into another function  

2) Take the derivative of           .    That is, find      
  

  
      . 

3) Solve for     to obtain            
 

     
 

4) Substitute         and       
 

     
 into ∫                  to obtain  ∫         

5) Integrate:      ∫                        

6) Substitute        back in:                 (    )    

 

A) The Substitution Method 

And 

B) Integration By Parts  



Substitution Examples 

∫               

 

 

 

 

 

 

 

 

 

 

 

∫   
 

        
     

 

 

 

 

 

 

 

 

 

 



Substitution Examples 

∫     
           

    
       

 

 

 

 

 

 

 

 

 

 

 

 

 

∫                

 

 

 

 

 

 



So far we have only seen how to evaluate an indefinite integral:   ∫  (    )                   

If we want to compute a definite integral  ∫   (    )       
 

 
     we have two options: 

 

 

1) Replace the original bounds: 

 

 

 

 

2) Substitute         back in: 

 

 

 

 

 

 

 

Using a previous example: 

∫                 

 

 

 

 

 

 

  



Another definite integral example: 

∫                   

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Definite integral using a previous example: 

∫  
 

        

 

 

     

 

 

 

 

 

 

 

 



                     

Recall the Product Rule:            
 

  
                                         

Here we want to find the antiderivative of the right hand side, so we integrate both sides: 

 ∫
 

  
                     ∫                           

 

 

 

Finally, we obtain the following result: 

∫                         ∫             

Sometimes represented as: ∫                                 ∫            

 

How To Use Integration By Parts 

 Given ∫              you need to choose one of      or       to be     and the other will be     . 

 

 We will differentiate     so choose     to be the one that taking the derivative makes it “less nasty” 

 

o Here is an acronym to help you decide what     should be. Then,      is whatever is left over. 

o Let   be the first of the following to appear in the integral: 

       I   .   L   .   A   .   T   .   E   . 

 

 

 

 Differentiate    to obtain       and   Integrate      to obtain    

 Plug                 into the formula   ∫                                 ∫          

 Evaluate  ∫           and simplify 



Examples Using Integration By Parts 

∫         

 

 

 

 

 

 

∫               

 

 

 

 

 

 

 

 

 

 

 



For a definite integral using integration by parts, use the following formula: 

∫    

 

 

         |

 

 

     ∫     

 

 

 

 

Examples 

∫    

 

 

    

 

 

 

 

 

∫   

  

 

       

 

 

 

 

 

 



More examples of integration by parts 

∫          

  

 

     

 

 

 

 

 

 

Sometimes you need to do integration by parts twice: 

∫                    

 

 

 

 

 

 

 

 

 

 

 



Chapter 24- Applications of Integration 

Much of the research being done in modern science makes use of the power of calculus to determine extreme 
values and find total amounts. This section aims to illustrate some of the applications of integration 
specifically, but please understand that there are countless more uses for integrals that will not be explored 
here. 

 

Finding the Area Between Two Curves 

Suppose we want to find the area between two functions      and     .  

 

What we really want to do is find the area under the upper curve and then subtract off the area under the 
lower curve: 

 

                                             

 

 

With the above in mind, the area, A, between two curves      and      from     to     is given by: 

 

  ∫     

 

 

     ∫    

 

 

     ∫           

 

 

    

 

Where           on       



Examples 

Find the area bounded between        from     to     

 

 

 

Find the area bounded between        from     to      

 

 

 

Find the area bounded by          ,       
 

 
     and the x-axis. 

 

 

 

 

 



Remember that when we compute ∫      
 

 
  ,   we are calculating total amounts between             . 

Therefore ∫         
 

 
   tells the sum of all function values between             . 

If the function is a rate of change (ie        ), then   ∫      
 

 
   will tell us the total change of      

between            .  

The following examples illustrate the value of an integral. 

 

Example: 

Pollution enters a lake at      given by the formula                     where   is measured in hours 

and       is a rate of change with units  
       

    
. 

At the same time a filter removes pollution at a rate given by            with the same units as      . 

How much pollution exists in the lake after 12 hours? 

 

 


